
an intro to rust
jacob hempel

Ferris, the rustacean

- topics:

- what is rust?

- syntax basics

- rust goodies

- ownership

- spooky stuff

- resources:
- https://doc.rust-lang.org/book/

- https://doc.rust-lang.org/rust-by-example/

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rust-by-example/

if you want to follow along:

- Linux/Mac:
- Go to https://www.rust-lang.org/tools/install and copy the command into your

terminal

- Follow on screen instructions

- $ source $HOME/.cargo/env

- Windows: (oh boy)

- You’ll need Visual Studio installed (or MinGW, if that’s your thing)

- Go to https://www.rust-lang.org/tools/install and follow the instructions

- Cargo commands should work in Command Prompt or Powershell, you might need an

editor like Atom or VSCode to write code

https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install

what is rust?

- rust is a compiled language made by the Mozilla Foundation
- fast: faster than everything except raw Assembly and sometimes C

- no runtime and no garbage collection

- rust does heavy optimizations at compile time to build some seriously fast

executables

- zero-cost abstractions: rust libraries provide high level abstractions that

run just as fast as the “manual” versions

- safe: rust guarantees that your program cannot have undefined behavior - this is

great for security and stability

- more on this soon!

- modern: rust’s toolchain is powerful and easy to use - and it’s the default!

- cargo is a compiler and package manager all in one!

- smart, helpful compiler messages

who’s using rust?

- Firefox’s new Servo rendering engine

- Cloudflare

- Dropbox

- Chucklefish (maker of Starbound & publisher of Stardew Valley)

- Ceph (enterprise storage)

- Canonical (Ubuntu)

quick intro to cargo

- Make a new directory/project with:
- cargo new --bin <projectName>

- Go into the directory
- cd <projectName>

- Edit the files in the src/ directory
- <editor> src/main.rs

- Run your project!
- cargo run

safety at compile time

- rust uses an ownership paradigm to protect your program’s data - in

short, rust data must follow these three rules:
- each value in rust has a variable that’s called its owner

- there can only be one owner at a time

- when the owner goes out of scope, the value will be dropped

ownership

to talk about ownership, we have to briefly talk about memory - data for

your program can be in two places, the stack and the heap

the stack:
- function calls and their

local data are placed on
the stack

- accessed directly
- types with fixed size,

like integers, bools,
and chars

the heap:
- used for large blocks of

allocated memory
- accessed via pointers
- types with variable size, like

strings and vectors

let’s see what the compiler has to say about it...

okay, what’s all this mean?

because a vector can expand and contract indefinitely, it can’t live on

the stack, because the stack’s structure must be known at compile time

therefore, a “vec” object in rust is really just a pointer to a heap

allocated block of memory

so, if you take a shallow copy of a vec object (like you do for integers)

then the line: “let mut v2 = v1;” would break the second rule of

ownership - there would be two owners of the heap allocated vector

in rust, we say that v1 has been moved into v2 - v2 now owns the vector,

so v1 is essentially dead

so v1 has been moved into v2 - “borrow of moved value: v1”

but what the hell is a borrow? And what’s a ‘Copy’ trait

references and borrowing

references in rust work a lot like smart pointers in C++, but naturally

they have a rust-ic style

references are variables that refer to another object (much like a pointer

in C/C++)

a reference does not take ownership of the thing it references, but

references have their own rules:

- you can have one mutable reference to a value

- OR you can have any number of immutable references to a value

- but not both!!

references and borrowing (continued)

rules like this might seem annoying (and they can be, trust me), but these

rules allow rust to prevent undefined behavior

one of the biggest problems with parallel programming is something called

a data race, where two threads try and access the same data value, at the

same time, and end up messing up the other thread

rust’s reference rules make data races impossible

references and borrowing (continued)

when a reference is used to access or mutate a value, the reference is

said to be “borrowing” the value

so now we’re (mostly) good with borrows and moves, but what’s this

bit about Copy traits?

traits

traits are attributes you can attach to a type that gives the type

implicit and/or explicit behavior

there are numerous built-in traits:

- Display and Debug

- Add, Sub, Neg, Mul, Div, Rem

- Not, BitAnd, BitOr, BitXor, Shl, Shr

- Copy and Clone

- and many more

traits (continued)

- many of those traits provide implicit behavior
- if a type has Display, you can print it with “{}” in a println!() macro

- if a type has Debug, you can print it with “{:?}” in a println!() macro

- if two types both have Add, then they can be added together with +

- this allows rust to imitate C++’s operator overloading
- you could design a BigInt struct that uses vectors to store very large numbers

- implement the Add trait for it, and then add your BigInts together!

- let sum = big1 + big2;

- generics can also require that the type T has certain traits
- for example, if you are making a data structure that requires that you add up your

member data, your data structure could require that T has the Add trait

Copy & Clone

Copy:

- If a variable is on the right side

of an assignment, and the

variable’s type has Copy, then the

value will be copied to a new

variable - otherwise, a Move will

occur

- Most simple types (numbers/chars)

have Copy, but more complex types

(structs, vectors, Strings) do not

Clone:

- If a type has the Clone trait,

a call to .clone() will

produce a deep copy of the

object

- Most types have Clone

implemented (or it can be

#derived

spooky stuff

rust has so many interesting, sometimes unsafe features and keywords that

there used to be a second book, the “rustnomicon,” which covered some of

the more fringe stuff, like:

- the unsafe keyword, which turns off some borrow-checking

- memory tools (Box<T>, Rc<T>, Cell<T>, RefCell<T>, Arc<T>, etc)

- closures, threading, shared-state, pipes, etc

- lifetimes

- macros

most of this can now be found in the later chapters of the regular book,

which I encourage you to read if you’re curious!!

thanks so much!!

if we have any time left, you can try some of these problems in rust:

- Tic tac toe

- See if a string is a palindrome (hard more - a number)

